for the outer part. For the inner part, Equations (5la, b), (52), (53), (54), and (55) apply. The latter equation applies with $\mathrm{q}_{3}=0$. Equation (56) is valid and can be used to find p / σ_{1} for the liner. [Equation (56) is not needed since p_{3} is given.] Solving for p / σ_{1}, one finds

$$
\begin{equation*}
\frac{p}{\sigma_{1}}=\frac{\alpha_{r}\left(k_{1}^{2}-1\right)}{\left[\frac{k_{1}^{2}+1}{2}-\frac{2}{g} \frac{k_{1}^{2}}{\left(k_{1}^{2}-1\right)}-2 \frac{E_{1}}{E_{3}} \frac{p_{3}}{p} \frac{k_{1}^{2} k_{2} k_{3}^{2}}{g\left(k_{3}^{2}-1\right)}\right]} \tag{61}
\end{equation*}
$$

This equation shows that an increase in p_{3} / p gives an increase in p / σ_{1}.
Let σ_{3} be the ultimate tensile strength of component 3 , the outer cylinder of the inner part of the ring-fluid-segment container. If fatigue relation, Equation (9) is used for this cylinder, then there results

$$
\begin{equation*}
\sigma_{3}=\frac{\mathrm{k}_{3}^{2}}{\mathrm{k}_{3}^{2}-1}\left[\frac{5}{2}\left(\mathrm{p}_{2}-\mathrm{p}_{3}\right)-\frac{1}{2} \mathrm{q}_{2}\right] \tag{62}
\end{equation*}
$$

The pressures p_{2} and q_{2} are related to p_{1} and q_{1} via Equations (5la, b). p_{1} and q_{1} are related by Equation (55) with $q_{3} \equiv 0$. One other equation involving p_{1} and q_{1} is needed which is found from the Definition (10b) for the parameter α_{m}, i.e.,

$$
\alpha_{m}^{\sigma_{1}}=\sigma_{m}=\frac{\left(\sigma_{\theta}\right)_{\max }+\left(\sigma_{\theta}\right)_{\min }}{2}=\frac{p}{2} \frac{k_{1}^{2}+1}{k_{1}^{2}-1}-\frac{\left(p_{1}+q_{1}\right)}{k_{1}^{2}-1} k_{1}^{2}
$$

at r_{0}.

Solving for p_{1} and q_{1}, finding p_{2} and q_{2}, substituting into Equation (62), and solving for p / σ_{3}, one obtains

$$
\begin{equation*}
\frac{p}{\sigma_{3}}=\frac{\left(k_{3}^{2}-1\right)}{k_{3}^{2}\left\{\frac{2}{k_{2}} \frac{q_{1}}{p}+\frac{5}{g\left(k_{1}^{2}-1\right) k_{2}}+\frac{5}{2} \frac{p_{3}}{p}\left[\frac{2 E_{1}}{g E_{2}} \frac{k_{3}^{2}}{\left(k_{3}^{2}-1\right)}-1\right]\right\}} \tag{63}
\end{equation*}
$$

where

$$
\frac{q_{1}}{p}=\frac{\left(\alpha_{r}-\alpha_{m}\right)}{2} \frac{\left(k_{1}^{2}-1\right)}{k_{1}^{2}} \frac{\sigma_{1}}{p}
$$

The pressure-to-strength ratios p / σ_{1} and p / σ_{3} are plotted in Figures 53 and 54 as a function of segment size k_{2} and wall ratio K^{1} for $\mathrm{k}_{1}=1.1, \mathrm{p}_{3} / \mathrm{p}=0.2, \alpha_{r}=0.5$, and $\alpha_{m}=-0.5$. The pressure-to-strength ratios increase with K^{\prime} or equivalently with k_{3}, since $K^{\prime}=k_{1} k_{2} k_{3}$. The behavior shown for $k_{1}=1$. 1 is the same as that found previously for the ring-segment container; i. e., p / σ_{3} increases with increasing k_{2}, but p / σ_{1} decreases. However, if k_{1} is increased to 1.5 from 1.1 , then p / σ_{1} also increases with

FIGURE 53. EFFECT OF SEGMENT SIZE ON THE PRESSURE-TO-STRENGTH RATIO, p / σ_{1}, FOR THE RING-FLUID-SEGMENT CONTAINER

FIGURE 54. EFFECT OF SEGMENT SIZE ON THE PRESSURE-TO-STRENGTH RATIO, p / σ_{3}, FOR THE RING-FLUID-SEGMENT CONTAINER

