for the outer part. For the inner part, Equations (51a, b), (52), (53), (54), and (55) apply. The latter equation applies with $q_3 = 0$. Equation (56) is valid and can be used to find p/σ_1 for the liner. [Equation (56) is not needed since p_3 is given.] Solving for p/σ_1 , one finds

$$\frac{p}{\sigma_{1}} = \frac{\alpha_{r} (k_{1}^{2}-1)}{\left[\frac{k_{1}^{2}+1}{2} - \frac{2}{g} \frac{k_{1}^{2}}{(k_{1}^{2}-1)} - 2 \frac{E_{1}}{E_{3}} \frac{p_{3}}{p} \frac{k_{1}^{2}k_{2}k_{3}^{2}}{g(k_{3}^{2}-1)}\right]$$
(61)

This equation shows that an increase in p_3/p gives an increase in p/σ_1 .

Let σ_3 be the ultimate tensile strength of component 3, the outer cylinder of the inner part of the ring-fluid-segment container. If fatigue relation, Equation (9) is used for this cylinder, then there results

$$\sigma_3 = \frac{k_3^2}{k_2^2 - 1} \left[\frac{5}{2} (p_2 - p_3) - \frac{1}{2} q_2 \right]$$
(62)

The pressures p_2 and q_2 are related to p_1 and q_1 via Equations (51a, b). p_1 and q_1 are related by Equation (55) with $q_3 \equiv 0$. One other equation involving p_1 and q_1 is needed which is found from the Definition (10b) for the parameter α_m , i.e.,

$$\alpha_{m}\sigma_{1} = \sigma_{m} = \frac{(\sigma_{\theta})_{max} + (\sigma_{\theta})_{min}}{2} = \frac{p}{2} \frac{k_{1}^{2} + 1}{k_{1}^{2} - 1} - \frac{(p_{1} + q_{1})}{k_{1}^{2} - 1} k_{1}^{2}$$

at ro.

Solving for p_1 and q_1 , finding p_2 and q_2 , substituting into Equation (62), and solving for p/σ_3 , one obtains

$$\frac{p}{\sigma_3} = \frac{(k_3^2 - 1)}{k_3^2 \left\{ \frac{2}{k_2} \frac{q_1}{p} + \frac{5}{g(k_1^2 - 1) k_2} + \frac{5}{2} \frac{p_3}{p} \left[\frac{2E_1}{gE_2} \frac{k_3^2}{(k_3^2 - 1)} - 1 \right] \right\}}$$
(63)

where

$$\frac{q_1}{p} = \frac{(\alpha_r - \alpha_m)}{2} \frac{(k_1^2 - 1)}{k_1^2} \frac{\sigma_1}{p}$$

The pressure-to-strength ratios p/σ_1 and p/σ_3 are plotted in Figures 53 and 54 as a function of segment size k₂ and wall ratio K' for k₁ = 1.1, p₃/p = 0.2, $\alpha_r = 0.5$, and $\alpha_m = -0.5$. The pressure-to-strength ratios increase with K' or equivalently with k₃, since K' = k₁k₂k₃. The behavior shown for k₁ = 1.1 is the same as that found previously for the ring-segment container; i.e., p/σ_3 increases with increasing k₂, but p/σ_1 decreases. However, if k₁ is increased to 1.5 from 1.1, then p/σ_1 also increases with Bug bistiens (propositions) [generated (provide the meridian provided (provide the forest of the started for a "The latter advances a provide visit of the meridian provided (provide the started started started to the starte "The startes of the startes of the startes of the meridian provided (provide the startes) of the startes of the

FIGURE 53. EFFECT OF SEGMENT SIZE ON THE PRESSURE-TO-STRENGTH RATIO, p/σ_1 , FOR THE RING-FLUID-SEGMENT CONTAINER

